As a standard reference book for railway track engineers and practitioners, Track Compendium describes clearly and compactly the physical properties of individual track components and their interrelationships.

Compared to the first English edition, this second edition contains several additional sections on the following topics:

- Equivalent conicity
- Interaction of the vehicle with track geometry faults
- Durability of wooden sleepers
- Ballast bed cleaning and ballast properties

There are also further additions in other chapters.

The author's wealth of knowledge and experience over more than 20 years of research in the field of track behaviour and the optimum methods of track maintenance should serve the railway engineers now and in the future as a practical aid and a useful reference book in their daily work.
Acknowledgements and Preface

I want to thank Roland Hogl who helped me with the illustrations. My thanks go to Johann Dumser – who provided valuable support in the collaboration with the publishing house – Rainer Wenty, Klaus Riessberger and many others not mentioned here by name, who helped me with their suggestions and the resources provided.

This present voluminous book came into being from my – not quite unselfish – wish to draw up a manual in a condensed form, containing relevant data for the railway engineer concerning track. Many ideas, as well as the basis of my understanding of the laws of physics relevant to track and track maintenance, were acquired from my dear friend Egon Schubert, who unfortunately died much too early, and Josef Theurer, to whom I am indebted. My work as the head of the research & development department of Plasser & Theurer has offered and still offers me the opportunity to deal with research in the field of track behaviour and optimum track maintenance methods. This knowledge and the rich experiences gained in my job over the last twenty years have been incorporated in this book. This new Track Compendium also contains many interesting facts from relevant technical publications. I owe thanks and a debt of gratitude also to the numerous authors of these publications, listed in the literature references.

This book has been translated with great precision by Ursula Hofer. I am greatly indebted to her for this exemplary work.

My great thanks also go to Richard Spoors, former senior railway civil engineer with Network Rail and President of the Permanent Way Institution who took the time to read through this second edition from the viewpoint of an experienced railway engineer and check the consistency and correctness of the railway terminology used, assisted by Susan Burton.

This is the 2nd edition of the English version, now translated from the 3rd edition of the original German book which was published in Spring 2010. The opportunity has been taken to make a number of small amendments and additions where technology has advanced or applications progressed.

I hope that this work will be a help and a useful reference book not only for the present generation of railway engineers, but also for those in the future.

In this way I hope to have made a small contribution to the success of the railways.

Bernhard Lichtberger
Linz, August 2011
Introduction

Welcome to this new English translation of the 3rd edition of Track Compendium. Since it was first published in 2005, I have made a number of changes and additions to reflect new techniques and methods that have been developed in the field of track engineering over the last 5 years.

This 2nd edition contains new material including a chapter about the principles of overhead line, installation and maintenance of overhead line, another additional section about the basic terminology of process control technology and safety technology, the latest findings regarding the occurrence of head checks and the wear resistance of head-hardened rails, plus supplementary information in the section on rail-wheel interaction, on the topic of equivalent conicity and running behaviour as well as contact mechanics and on the theme of cost-efficiency of track maintenance. Also included in the new edition are the latest results from comprehensive studies made by Graz University of Technology and Austrian Federal Railways (ÖBB) concerning the influence of parameters, such as track curve radius, axle load, track material and quality of the formation on the durability of the track geometry. Special attention is given to the occurrence of rail vehicle noise and the causes of noise plus the effect of roughness of rails and wheels on the emitted noises are explained. A new, extensive theory of dynamic track stabilisation which depicts as a formula the influence of the different operating parameters, such as frequency, amplitude, impact force and static load, on the stabilisation and settlement of the track. Other findings concerning the productivity of ballast cleaning machines in relation to conveying capacity, chain wear, throughput, reclaimed material, screen quality, influence of dampness of the material and volume of reclaimed material, have also been included in the new edition. In the chapter covering maintenance, laying and renewal of tracks, the latest track maintenance machines have been included with detailed descriptions of their functions, such as the RM1500 high-capacity ballast cleaning machine, the RU 800S a combination machine for track renewal and ballast bed cleaning and the 09-4X Dynamic Tamping Express a continuous action four-sleeper tamping machine with integrated track stabiliser.

For those of you who may be reading my book for the first time, I hope the following is helpful. The theory and practice of track engineering changes little between the railways of the world. What does change, most of all, is the natural environment in which railways are built and operate, and the loads and speeds they are designed to carry. There can be no doubt that as we move towards the middle of the 21st century railways are becoming an ever increasing part of our lives as an essential and economic mode of land transportation. High speed rail travel is a growing market and of course much of that technology has been developed here in Europe.

In many of the chapters I have documented and referenced well known and internationally recognised civil and mechanical engineering practice. Generally speaking each railway applies this knowledge in slightly different ways, depending on the environment and technical standards developed and adopted by that railway. In this book I have largely followed the practices and norms of the German and Austrian railway infrastructure organisations, frequently adding references and practices of other railways where relevant. At times, therefore, please do not forget to consider how the engineering principles have been adapted for application by your railway administration, as it may be slightly different to the way I have described it in my book.

I hope you find it useful for many years to come.

Bernhard Lichtberger

Linz, August 2011
Contents

Acknowledgements and Preface ... 5

Introduction ... 6

1 General information .. 21

2 The track structure .. 24

2.1 Track design considerations .. 24
 2.1.1 Circular curves and straight track .. 25
 2.1.2 Superelevation ... 26
 2.1.3 Nominal track gauge and inclination of the rails 28
 2.1.4 Gauge widening .. 29
 2.1.5 Transition curves ... 29
 2.1.6 Superelevation ramps ... 29
 2.1.7 Vertical alignment and points where the gradient changes 30
 2.1.8 Track cross sections above the formation level 30
 2.1.9 Track cross sections ... 31
 2.1.10 Formation widths ... 31
 2.1.11 Critical speeds for ‘heavy’ track ... 32
 2.1.12 Maximum speed on various railways 33

2.2 Static forces on the track ... 33
 2.2.1 Vertical forces ... 33
 2.2.2 Longitudinal rail forces .. 34
 2.2.3 Lateral forces ... 34

2.3 Dynamic forces on the track .. 35
 2.3.1 Wheel load transfers ... 35
 2.3.2 Vibration excitations ... 36
 2.3.3 Natural vehicle and track oscillations 36

2.4 Track resistance .. 37
 2.4.1 Bearing capacity ... 37
 2.4.2 Coefficient of ballast C and vertical rigidity 38
 2.4.3 Longitudinal resistance ... 43
 2.4.4 Lateral resistance to displacement 44
 2.4.5 The distribution of force from wheel to subsoil 50
Contents

2.5 Track calculation ..50
 2.5.1 Rail calculation ..50
 2.5.2 Supporting point force calculation ...57
 2.5.3 Sleeper calculation ...58
 2.5.4 Rail fastening calculation ...58
 2.5.5 Limit values of ballast loads ..58

2.6 Modern track design considering dynamic effects ...59

2.7 Stable support of the rails and sleepers ...62
 2.7.1 Expansion of rails in curves ...62
 2.7.2 The Prud’homme criterion ..63
 2.7.3 Rail temperature versus rail fastening-down temperature63
 2.7.4 Calculation of horizontal geometry stability for straight track66
 2.7.5 Calculation of horizontal position stability in curves ..67
 2.7.6 Calculation of vertical track stability ..68
 2.7.7 Longitudinal stability of a track ..69
 2.7.8 Natural vibration of bridges ..71
 2.7.9 Sliding layer – embankment ..72
 2.7.10 Environmental problems caused by tracks ..72
 2.7.11 Behaviour of natural frequencies ..73
 2.7.12 Propagation of oscillation ...75
 2.7.13 Influence of railways on the environment ..79
 2.7.14 Measures to reduce environmental influence ...81

2.8 Conclusions for track maintenance ...83

2.9 Maintenance techniques ...84

3 The rails ...85

3.1 Rail requirements ..85

3.2 Rail production ...85

3.3 Types of rails ..86
 3.3.1 “Naturally” hard rails ...86
 3.3.2 Thermally treated rails ...86
 3.3.3 High-alloy rails ...90
 3.3.4 Bainitic rails ...90
3.4 Chemical composition of rail steel ... 91
3.5 Static hardness test ... 92
 3.5.1 Brinell hardness ... 92
 3.5.2 Diamond pyramid hardness (D.H.P.) ... 92
 3.5.3 Rockwell hardness ... 92
3.6 Stress-strain diagram .. 94
3.7 Rail branding ... 94
3.8 Rail types ... 95
 3.8.1 Unsymmetrical rail profiles in tight curves .. 98
 3.8.2 The convex rail for the improvement of the running behaviour of railway vehicles .. 100
3.9 Rail lengths ... 100
3.10 Noise emission of rails .. 101
3.11 Rail stress .. 101
 3.11.1 Stress by vertical wheel load ... 101
 3.11.2 Stress caused by lateral forces ... 102
 3.11.3 Stress caused by dynamic forces ... 102
 3.11.4 Longitudinal forces caused by changes in temperature 103
 3.11.5 Longitudinal forces caused by train acceleration and braking forces 103
 3.11.6 Stress in the rail ... 103
 3.11.7 Spring deflection of the rail head ... 105
 3.11.8 Stresses caused by track vehicles ... 106
3.12 Quenching and tempering of rails .. 106
 3.12.1 Rail hardening ... 106
 3.12.2 Rail surface treatment .. 107
3.13 Rail strength calculation .. 107
3.14 Endurance resistance of rails .. 108
3.15 Wear behaviour of wheel and rail steel ... 109
 3.15.1 The magic wear rate ... 109
 3.15.2 Lateral rail wear .. 110
 3.15.3 Vertical rail wear .. 111
Contents

3.16 Rail welding ... 112
3.16.1 Aluminothermic welding .. 112
3.16.2 Flash-butt welding ... 112
3.16.3 Rail fractures in welds .. 113

3.17 Laying, welding and tensioning of rails 114
3.17.1 Neutral temperature .. 114
3.17.2 Production of continuous welded rails 115
3.17.3 Temperature increase by linear eddy current brakes 117
3.17.4 Rail temperature increases caused by “classical” braking 118

3.18 Rail defects ... 118
3.18.1 Rolling contact fatigue and wear 119
3.18.2 Head checks .. 124
3.18.3 Belgrospis ... 125
3.18.4 Squats ... 126
3.18.5 Damage to running edges of single-track lines 126
3.18.6 Indentations .. 126
3.18.7 Wheel burns ... 126
3.18.8 Skid marks – short waves .. 126
3.18.9 Rail corrugations ... 127
3.18.10 Rolling defects ... 131
3.18.11 Triggers and growth of cracks 131
3.18.12 Measurement of rail wear .. 132

3.19 Rail treatment in the track .. 133
3.19.1 Treatment of low rail joints .. 133
3.19.2 Treatment of corrugations and skid marks 133

4 Rail fastenings ... 135
4.1 The CEN standard on rail fastenings 135
4.2 The purpose of the rail fastenings 135
4.3 The effective forces ... 136
4.3.1 Vertical forces ... 136
4.3.2 Lateral forces (acting across the track) 136
4.3.3 Forces acting in the longitudinal track direction 137
4.4 Differences between rigid/elastic rail fastenings 138
4.5 The rail pads ... 138
4.6 The design of rail fastenings .. 140
 4.6.1 Rail fastening to wooden sleepers ... 140
 4.6.2 The rail fastening to steel sleepers ... 143
 4.6.3 The rail fastening to concrete sleepers ... 144
 4.6.4 Rail connections ... 150
4.7 Checking the rail connections .. 152
4.8 Checking rail fastenings by the GRMS track recording car 152

5 The sleepers ... 153
 5.1 Comparison between wooden and concrete sleepers 153
 5.2 The purpose of sleepers .. 154
 5.3 Wooden sleepers .. 154
 5.3.1 Treatment of wooden sleepers ... 156
 5.3.2 Defects of wooden sleepers .. 157
 5.3.3 Maintenance of wooden sleepers in the track ... 157
 5.3.4 The experience with wooden sleepers in the USA 157
 5.3.5 Hardwood and softwood .. 158
 5.4 Steel sleepers .. 158
 5.5 Reinforced concrete sleepers .. 163
 5.5.1 Approval tests and requirements for concrete sleepers 163
 5.5.2 Experiences in practical application of concrete sleepers 164
 5.5.3 Twin-block sleepers .. 164
 5.5.4 Monoblock concrete sleepers ... 165
 5.5.5 Special forms of concrete sleepers .. 167
 5.6 Sleeper calculation .. 170
 5.6.1 Design wheel load ... 170
 5.6.2 Calculation of cross sleepers .. 171
 5.6.3 Calculation of longitudinal sleepers ... 171
 5.6.4 Calculation of sleeper slabs ... 171
 5.6.5 Distribution of the wheel load ... 172
 5.6.6 Sleeper deflection ... 173
 5.7 Resistance to lateral and longitudinal displacement 174
 5.7.1 Resistance to lateral displacement (RLD) .. 174
 5.7.2 Resistance to longitudinal displacement .. 174
Contents

6 Ballast and the ballast bed ... 175
 6.1 Ballast bed requirements ... 175
 6.1.1 Ballast bed cross section ... 175
 6.1.2 Ballast materials ... 176
 6.1.3 Testing of track ballast ... 178
 6.1.4 Technical conditions for the supply of track ballast 181
 6.1.5 Types of ballast contamination .. 181
 6.2 Physical properties of ballast and shearing behaviour 185
 6.2.1 Static shearing behaviour .. 186
 6.2.2 Static shearing behaviour of contaminated ballast, used ballast, round gravel and recycled ballast .. 186
 6.2.3 Static shearing behaviour with an optimum share of distance grain 188
 6.2.4 Dynamic shearing behaviour .. 188
 6.3 Ballast Cleaning ... 189
 6.3.1 Cleaning of the ballast bed shoulders 189
 6.3.2 Cleaning of the entire ballast bed ... 189
 6.3.3 The performance of cleaning machines 189
 6.3.4 Washing of ballast .. 189
 6.4 Ballast bed dimensioning .. 190
 6.4.1 The optimum ballast thickness – load distribution on sleepers 190
 6.4.2 Ballast required for ballast beds of different cross sections 191
 6.5 Restoration of the ballast bed .. 191
 6.5.1 Restoration of track position by machines 191
 6.5.2 Technology of working after ballast cleaning 192
 6.6 Gluing of ballast .. 194

7 The track formation ... 195
 7.1 General information on the bearing capacity of the track 195
 7.1.1 Measurement of the bearing capacity of the formation 195
 7.1.2 Consolidation of the subsoil – Proctor density test 195
 7.2 Drainage of the subsoil .. 196
7.3 Reinforcement of the formation ... 196
 7.3.1 Reinforcement of the formation by inserting pavements, slabs 196
 7.3.2 Chemical soil transformation ... 197
 7.3.3 Increased thickness of the ballast bed .. 197
 7.3.4 PVC sheets .. 198
 7.3.5 Insertion of protective layers ... 198
 7.3.6 Insertion of geotextiles .. 213

8 The subsoil .. 217
 8.1 Types of soils and their parameters .. 217
 8.1.1 Characteristic soil parameters .. 217
 8.1.2 Parameters of bearing capacity .. 220
 8.2 Properties of soils ... 223
 8.2.1 Moisture and density .. 223
 8.2.2 Plasticity (Atterberg limit – plastic limit) ... 223
 8.2.3 The tensional and expansive behaviour of soils 223
 8.2.4 The bearing capacity of soils ... 227
 8.3 Defects of the soil formation ... 228
 8.4 Reasons for damage to the soil formation ... 229
 8.5 Consequences of damage to the soil formation ... 229
 8.6 Ideal and poor soils .. 229
 8.7 Stress on the subsoil and its settlement behaviour 230
 8.7.1 Ballast bed modulus of multi-layer systems – the theory of Odemark 230
 8.7.2 Diffusion of stress in multi-layer systems in the load axis 231
 8.8 Subsoil and earth structure deformations ... 233
 8.9 Load on the soil formation ... 234
 8.10 Geometrical requirements for the soil formation 235
 8.11 Soil analyses ... 235
 8.11.1 Seismic method .. 235
 8.11.2 Slotted-probe sounding with sampling ... 236
 8.11.3 Subsoil testing machine (UUM) .. 236
 8.11.4 Evaluation of longitudinal versine values recorded by track recording cars 236
 8.11.5 Stiffness measurements ... 236
Contents

8.11.6 Cone penetration test – manometric capsule .. 237
8.11.7 Dynamic probes ... 237
8.11.8 Inspection pits ... 237

8.12 Soil improvement and compaction .. 237
8.12.1 Vibration pressure compaction .. 238
8.12.2 Vibration filling method .. 238
8.12.3 Pile-like bearing elements ... 238

8.13 Chemical soil conversion ... 239
8.13.1 Soil improvement by lime .. 239
8.13.2 Soil stabilisation by cement .. 239
8.13.3 Soil strengthening according to Joosten ... 239

8.14 Soil drainage ... 240
8.14.1 Water in the soil ... 240
8.14.2 The influence of water on the soil ... 240
8.14.3 Drainage systems .. 241

8.15 Frost sensitivity of the subsoil .. 243
8.15.1 Frost criterion according to Casagrande ... 244
8.15.2 Protection from frost heaves .. 244

9 Types of track .. 245
9.1 Ballasted track .. 245
9.1.1 Approaches to describing track quality ... 245
9.1.2 Properties of track quality ... 246
9.1.3 Properties of the ballasted track ... 249
9.1.4 Diffusion of pressure in the substructure below the sleeper 255
9.1.5 The deformation behaviour of ballasted track ... 255
9.1.6 Critical vibration speed and dynamic settlement behaviour 264
9.1.7 The bearing capacity of the ballast bed ... 267
9.1.8 The resistance of the ballasted track to lateral displacement 274
9.1.9 The critical speed for track ... 274
9.1.10 Reasons for the development of fines .. 276
9.1.11 Distribution of fines in the ballast bed .. 276

9.2 In search of an optimum track structure .. 276
9.2.1 The JR Central model ... 276
9.2.2 The Delft University model .. 279
9.2.3 The TU Graz model .. 280
9.2.4 Dynamic track models .. 284
9.3 How to produce track of highest initial quality ...285
9.4 Ballasted tracks with cross sleepers...286
9.5 Ballasted track for high-speed lines..286
 9.5.1 Required properties for a ballasted track on high-speed lines287
 9.5.2 Further development of the ballasted track ..290

10 Slab track ..297
10.1 Requirements of slab track ..297
 10.1.1 Non-settling subsoil ..297
 10.1.2 Precise construction and strength of the upper foundation layers297
 10.1.3 Construction precision and strength of the lower unbound foundation layers 298
10.2 Slab track in tunnels ..300
10.3 Slab track on earth structures ...301
10.4 Comparison between ballasted track and slab track301
 10.4.1 Advantages of slab track ...302
 10.4.2 Disadvantages of slab track ...303
10.5 Economic efficiency and cost of slab track ..304
10.6 Design types of slab track ..305
 10.6.1 In-situ design types on support points with sleepers306
 10.6.2 Track placement design ...309
 10.6.3 Monolithic designs on supporting points without sleepers312
 10.6.4 Pre-fabricated designs on supporting points without sleepers313
 10.6.5 Continuous support with sealed rail ..316
 10.6.6 Continuous support with embedded rail ..318
10.7 Comparison of overall heights of various designs of slab track319
10.8 Technical and economic comparison of the slab track designs320

11 Interaction between wheel and rail ...321
11.1 Dynamics of vehicle movement ..321
 11.1.1 Starting forces ...321
 11.1.2 The starting resistance w_0 ..321
Contents

11.1.3 Gradient resistance w_g ... 321
11.1.4 Curvature resistance w_k ... 322
11.1.5 Running resistance w_r of vehicles ... 322
11.1.6 Air resistance .. 323
11.1.7 Running resistance of trains (w_v) according to Strahl 324
11.1.8 Acceleration resistance w_a .. 325
11.1.9 Equivalent conicity .. 324

11.2 The contact between wheel and rail .. 330
11.2.1 The Hertz surface pressure ... 330
11.2.2 Contact mechanics .. 331

11.3 The influence of the rail/wheel contact geometry 333

11.4 Vehicle defects .. 333

11.5 Forces acting on the track due to dynamic wheel loads 333
11.5.1 Interaction of the vehicle and defects in track geometry 335
11.5.2 Dynamic vehicle forces occurring through individual defects 337
11.5.3 Vertical sleeper impact when a train passes sleepers in a defective position ... 339
11.5.4 The natural frequency of the wheel-rail system 341

11.6 Rail vehicle noise .. 342
11.6.1 Reason for the sound .. 342
11.6.2 Consequences of rough rail surfaces .. 343
11.6.3 Consequences of rough wheels ... 344

11.7 Assessment and measurement of vehicle reactions 345
11.7.1 The SR method developed by DB AG ... 346
11.7.2 The VRA system developed by Netherlands Railway (NS) 346

11.8 The requirements to be met by vehicles for track 346

11.9 The optimum vehicle ... 346
11.9.1 The track geometry – a mathematical description as a basis for vehicle design... 347
11.9.2 Synthesis of a classified track from density spectra of track unevenness 349
11.9.3 Analysis of vehicle responses by means of classified tracks 349
11.9.4 Possibilities to optimise vehicle chassis ... 349

11.10 Tilting trains ... 350
11.10.1 Tilting trains with active control system .. 350
11.10.2 Tilting trains with passive control systems ... 351

11.11 Vehicle monitoring .. 351
12 Turnouts.. 353
12.1 The functions of turnouts, crossings and diamond crossings with slips 353
12.2 The main types of turnouts, crossings and diamond crossings with slips... 354
12.2.1 Single turnouts .. 354
12.2.2 Tandem turnouts .. 354
12.2.3 Crossings and diamond crossings with slip switches 355
12.2.4 Curved turnouts .. 355
12.2.5 Vertex clothoid turnouts .. 355
12.3 Designation of turnouts.. 356
12.4 Elements of turnouts.. 356
12.4.1 The switch unit .. 356
12.4.2 Switch-blade rolling device ... 359
12.4.3 Optimisation of the running edge .. 359
12.4.4 The stock rail .. 359
12.4.5 The crossing .. 360
12.4.6 The wing rails ... 363
12.4.7 The check rail ... 363
12.4.8 Switch locking bars .. 364
12.4.9 Hydraulic switch drive ... 364
12.4.10 Switch heating ... 364
12.4.11 Flange width, dimension for crossing nose protection and back-to-back
distance between the check rail and the wing rail .. 365
12.4.12 Turnout diagnosis systems ... 366
12.5 The vibration-damped turnout with divided long bearers.............................. 366
12.6 Geometric and structural characteristics of turnouts..................................... 367
12.6.1 The lateral acceleration .. 367
12.6.2 The change in lateral acceleration (the lurch) .. 368
12.6.3 The crossing angle .. 368
12.7 Schematic representation of turnouts.. 369
12.8 Settlement behaviour of turnouts.. 369
12.9 Maintenance of turnouts.. 370
12.9.1 Inspection of turnouts ... 370
12.9.2 Preparatory work before maintenance ... 370
12.10 Rail adjustment switches ... 371
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Overhead line system</td>
<td>372</td>
</tr>
<tr>
<td>13.1</td>
<td>Types of traction current</td>
<td>372</td>
</tr>
<tr>
<td>13.2</td>
<td>Direct current systems (DC)</td>
<td>373</td>
</tr>
<tr>
<td>13.3</td>
<td>Alternating current systems (AC)</td>
<td>373</td>
</tr>
<tr>
<td>13.4</td>
<td>Catenary</td>
<td>373</td>
</tr>
<tr>
<td>13.5</td>
<td>Air distances</td>
<td>376</td>
</tr>
<tr>
<td>13.6</td>
<td>Various designs of overhead lines</td>
<td>376</td>
</tr>
<tr>
<td>13.7</td>
<td>Structure of longitudinal catenary</td>
<td>378</td>
</tr>
<tr>
<td>13.8</td>
<td>Return of traction current</td>
<td>379</td>
</tr>
<tr>
<td>13.9</td>
<td>Permissible contact voltage</td>
<td>382</td>
</tr>
<tr>
<td>13.10</td>
<td>Interaction between current collectors and overhead line</td>
<td>383</td>
</tr>
<tr>
<td>14</td>
<td>Fundamentals on control and signalling in railway operation</td>
<td>384</td>
</tr>
<tr>
<td>14.1</td>
<td>Block sections</td>
<td>384</td>
</tr>
<tr>
<td>14.2</td>
<td>Track circuits</td>
<td>384</td>
</tr>
<tr>
<td>14.2.1</td>
<td>Insulated rails</td>
<td>384</td>
</tr>
<tr>
<td>14.2.2</td>
<td>Insulating joints</td>
<td>384</td>
</tr>
<tr>
<td>14.3</td>
<td>Axle counters</td>
<td>385</td>
</tr>
<tr>
<td>14.4</td>
<td>Intermittent automatic train control</td>
<td>385</td>
</tr>
<tr>
<td>14.5</td>
<td>Continuous train control (CTC)</td>
<td>386</td>
</tr>
<tr>
<td>14.6</td>
<td>The European rail traffic management system ERTMS</td>
<td>386</td>
</tr>
<tr>
<td>14.7</td>
<td>Automatic train stop</td>
<td>387</td>
</tr>
<tr>
<td>14.8</td>
<td>Hot box detection</td>
<td>387</td>
</tr>
</tbody>
</table>
15 Track maintenance ... 389
15.1 Typical maintenance cycles ... 389
15.2 Standard values for maintenance and danger limits 389
15.2.1 Standard values for maintenance and danger limits concerning
 the track geometry ... 390
15.2.2 Standard maintenance values for defects on the rail surface 391
15.2.3 Standard maintenance values – cross section of the rail head 391
15.3 Accuracy of acceptance ... 392
15.4 Considerations on track quality .. 393
15.4.1 Graph of track quality ... 393
15.4.2 Cumulative curve of track defects 397
15.5 The choice of the optimum duration of track possessions 398
15.6 Correction of track geometry .. 400
15.6.1 Track geometry measurement .. 400
15.6.2 Surveyed track – measurement and calculation of track correction values
 with absolute track geometry .. 416
15.7 Correction of rail defects .. 486
15.7.1 Rail measurement ... 486
15.7.2 Correction of rail defects .. 489
15.8 Ballast bed treatment .. 505
15.8.1 Measurement of the ballast bed profile 505
15.8.2 Ballast bed cleaning ... 505
15.8.3 Vegetation control ... 530
15.8.4 Vacuum excavating method ... 531
15.8.5 Ballast distribution and conveying systems 532
15.8.6 Ballast distributing and regulating machines 534
15.8.7 Ballast Distribution System ... 538
15.9 Subsoil improvement .. 540
15.9.1 Measurement of the subsoil conditions 540
15.9.2 Insertion of formation protective layers 543
15.9.3 Methods of soil upgrading .. 551
15.10 Laying and relaying of rails and sleepers 553
15.10.1 Historical outline ... 553
15.10.2 The track relaying train .. 555
15.10.3 Rail pulling and pushing device 558
Contents

15.11 Laying and transportation of turnouts ... 558
 15.11.1 Plug-in turnouts .. 558
 15.11.2 Turnout transporting wagon, WTW series .. 558
 15.11.3 Turnout relaying machine, WM series .. 558
 15.11.4 Turnout relaying using cranes ... 560
 15.11.5 Turnout relaying with the UWG system .. 560

15.12 Track construction cranes ... 561

15.13 Maintenance of overhead lines ... 561
 15.13.1 Dismantling the existing catenary .. 562
 15.13.2 Assembly of new catenary .. 565
 15.13.3 Assembly of the line feeder and the return line .. 568

16 Life cycle costs of railways .. 569
 16.1 UIC study comparing the life cycle costs (LCC) of railways 569
 16.2 Factors forcing up costs .. 571
 16.3 Cost saving potentials .. 572
 16.4 Differential LCC ... 573
 16.4.1 Net present value method and internal rate of interest 573
 16.4.2 Standard kilometres ... 574
 16.4.3 Composition of the annual costs .. 574
 16.4.4 Results of the differential LCC calculation ... 575
 16.5 Track maintenance costs .. 578
 16.6 The effect of mechanisation on the economic efficiency of track maintenance .. 578
 16.7 Track access charges .. 579

Bibliography ... 581

Keywords .. 606

Advertisers' Index .. 621
The track structure

shows ground waves excited by a vertical vibration source. The slowest and most energy-consuming are surface waves. They are highly damped with increasing depth and horizontal distance and fade away very quickly. Compared to shearing waves they are comparatively harmless to subsoil and formation. As there is much more energy contained in shearing waves than in compression waves, they have an adverse influence on the soil formation.

The amplitude of Rayleigh waves on railway tracks \([63]\) decreases with increasing distance according to the following law:

\[
A_2 = A_1 \cdot \left(\frac{R_1}{R_2} \right)^{B - \frac{R_1}{R_2}}
\]

A₁, A₂ … amplitudes in the place R₁ or R₂, respectively
B … fade-away value
R … distance

The following table shows typical values of fade-away values.

<table>
<thead>
<tr>
<th>Soil type</th>
<th>Fade-away value (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft soil (clay, peat)</td>
<td>1.2</td>
</tr>
<tr>
<td>Cohesive soil (loam, clay)</td>
<td>1.6</td>
</tr>
<tr>
<td>Mixed soil (clay, marl)</td>
<td>2.0</td>
</tr>
<tr>
<td>Loose soil (sand, gravel)</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Table 29: Fade-away value \(B\) for various soil types
2.7 Stable support of the rails and sleepers

Figure 32: Wave propagation in the elastic half-space [64]

Figure 33: Vibration amplitude versus soil depth, Rayleigh waves
9.1 Ballasted track

9.1.5.4.5 Settlement properties of different ballast materials

The influence of the angularity of ballast on its settlement behaviour is greater than its abrasive properties. Figure 150 shows the settlement behaviour of various ballast materials.

![Figure 150: Settlement properties of various ballast materials](image)

The ballast materials have the following properties:

<table>
<thead>
<tr>
<th>Properties</th>
<th>Granite</th>
<th>Meta-basalt</th>
<th>Quartz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle length/width</td>
<td>1.46</td>
<td>1.60</td>
<td>2.30</td>
</tr>
<tr>
<td>Particle size</td>
<td>29.2</td>
<td>31.3</td>
<td>39.2</td>
</tr>
<tr>
<td>Los Angeles abrasion (adm. ≤ 12 – 14)</td>
<td>40</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>Percentage increase of particle size < 6.7 mm after the experiment</td>
<td>0.35</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Coefficient of fracture</td>
<td>28</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>Coefficient of impact (adm. ≤ 14 – 18)</td>
<td>33</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>Broken particles</td>
<td>85</td>
<td>98</td>
<td>100</td>
</tr>
<tr>
<td>Shapelessness (adm. ≤ 5 – 30)</td>
<td>1</td>
<td>25</td>
<td>14</td>
</tr>
<tr>
<td>Surfaces of fractures</td>
<td>5.5</td>
<td>8.1</td>
<td>13.2</td>
</tr>
</tbody>
</table>

Table 78: Mechanical properties of various ballast materials

9.1.5.4.6 Settlement behaviour depending on the contamination of the ballast bed

The track settlement increases progressively with contamination. As defects in longitudinal track level and twist increase proportionally to settlement, track quality decreases faster and tamping has to be carried out earlier and more frequently. Figure 151 shows how settlement depends on the degree of contamination. The contaminating agent in this case was moist silt.
9 Types of track

9.1.5.4.7 Settlement after tamping according to Shenton

Shenton [307] developed an empirical formula to forecast settlements which considered various factors. The formula is:

$$e_N = K \cdot \frac{F_e}{10} \left(0.69 + 0.028 \cdot h\right) \cdot 0.5N + 2.7 \cdot 10^{-6} \cdot N$$

K ... factor describing the track structure (type of sleepers, ballast quality, subsoil properties) – a value $K = 1.1$ is typical for English track

F_e ... equivalent wheelset load [t] (considers the fact that high wheelset loads are dominant for settlement)

h ... lifting value [mm]

The term proportional to the 5th root of N describes the influence of the tamping machine which is dominant up to an operational load of 1 million tons. The term which is proportional to N describes the settlement of the ballast layer and the subsoil.

The equivalent wheelset load is calculated according to the following formula:

$$F_e = \sqrt{\left(\frac{F_1^5 \cdot N_1 + F_2^5 \cdot N_2 + F_3^5 \cdot N_3 + \ldots}{N_1 + N_2 + N_3 + \ldots}\right)}$$

$F_{1\ldots n}$... Axle loads of different train types [t]

$N_{1\ldots n}$... Number of cycles of different train types

9.1.6 Critical vibration speed and dynamic settlement behaviour

Rehfeld [308] postulates that the vibration speed is an important factor causing critical dynamic conditions in the ballast bed. Ballast pressure and vibration speeds vary on newly laid tracks from sleeper to sleeper ([309], [310]). On new tracks, vibration speeds of the ballast of 20–26 mm/s were measured. Vibration speeds between 10 and 15 mm/s are considered normal.
In alternating current operated systems the proportion of current returned through the earth can be up to 20–55% of the traction current. In alternating current installations the current density in the earth decreases exponentially with depth. On direct current railways the proportion of current returned through the earth has to be kept to a minimum because of stray currents and the propensity to initiate corrosion. Current passing through the soil is evenly distributed in the soil.

If the railway current supply is designed for traction currents of more than 1200 A, return cables must be installed [412]. The return cables are usually installed from mast top to mast top. Every 600 m they are connected to the track's earth network. Their advantages are [413]:

- a reduction of the impedance of the overhead line (by 20–30%),
- a reduction of interference with adjacent telecommunications systems,
- a significant reduction of the magnetic effect of the overhead line network,
- a reduction of the track-earth potential (by up to 55%),
- the possibility of installing fibre-optic cables for information transfer within the earth cable, and
- a reduction in the required maintenance due to the reduced number of track-to-earth connections.

In order to strengthen the earth contact an additional earth strip is laid parallel to the track which is connected to the rail (earth bar) at regular intervals. This helps to reduce the track-to-earth voltage to approximately 3–4 V/100 A.
13 Overhead line system

13.9 Permissible contact voltage

The track is the preferred choice of medium to protect persons or animals from indirect contact with the power supply. This protection is achieved by connecting all conductive materials to the running rails. We distinguish between immediate and open connection to earth. Immediate railway earth contact means that all conductive materials are connected to the return line. Open railway earth contact means that the conductive elements are connected to the railway earth via voltage limitation devices. In case a failure occurs and the triggering voltage is exceeded, an electrical connection is established. Figure 244 shows that the permissible contact voltage depends on the duration of the voltage occurrence in the event of failure.

Assuming a failure duration of more than 5 seconds, the admissible contact voltage in an alternating current system is 75 V and in a direct current system approximately 180 V. A dangerous situation in the railway area can only occur if the proportion of the track-to-earth potential which can be tapped exceeds the permissible contact voltage.

The improved isolation of modern track structures, such as the Wk track system or slab track, require protective measures against electric shock from the potential in the rail.

Earth connections (non-insulating conductors or conductive elements) in the railway area can be the following:
- foundations of catenary masts,
- earth strips laid parallel to the track (typical parameters: 1 m depth, about 50% decrease of the track-to-earth potential), and
- natural earth connections, like metal piping, cable sheaths, structural steel elements, foundations of buildings and earth connections of substations.

![Figure 244: Admissible contact voltages depending on the duration of current flow](image)

The running rails of a track without track circuits must be connected at distances not exceeding 150 m. For urban railways and high-capacity lines the maximum permissible distance is reduced to 75 m.
the rolling stock, and cause the track geometry to deteriorate from the dynamic interaction between the wheel and the rail defects [493].

Figure 333 shows the GWM 550 rail grinding machine for plain line and turnouts.

![GWM 550 Grinding Machine](image)

Figure 333: GWM 550 Grinding Machine

This machine uses oscillating grindstones, as opposed to the rail grinding trains with their rotating grinding wheels. The machine is equipped with five grinding units (see Figure 334). Each grinding unit carries six grindstones. Grinding is performed by the oscillating movement of the grinding units combined with the continuous forward movement of the machine. The vertical static load can be adjusted hydraulically. These components together achieve a high grinding performance and an excellent quality of the rail surface which is why this method is frequently used also for “acoustic” grinding. At forward speeds of 1200 m/h the material removed amounts to 0.05–0.07 mm per machine pass. The abrasion mainly depends on the grinding speed, the pressure and the quality of the grindstones, the amplitude of the defects and the hardness of the rail surface.

As the grindstones are arranged to act in a rigid line 2 metres long, they can reliably remove corrugation, as well as long-wave rail defects. A water spray arrangement ensures a grinding procedure free of sparks and dust. The higher the surface quality after grinding, the later corrugation will recur [494]. This is also the reason why preventive grinding of newly laid rails is so economically effective. The graph in Figure 335 (measurement using the roughness measurement device RMT 1200 E) shows the roughness profile before and after oscillating grinding of the left hand rail (place of measurement: Bienenbüttel, Celle-Lüneburg track, 23/2/1992; Schweerbau company). The roughness amplitude before grinding amounted to about ±20 μm. It could be reduced by grinding to about ±3 μm. The graph in Figure 336 gives the third-spectra of roughness at the measurement place mentioned above (roughness level $L = 20 \cdot \log (r/r_0)$; $r_0 = 1 \mu m$, r = measured and averaged amplitude) before and after grinding.
Figure 336 shows that for a wavelength of 3 cm the critical peak was reduced from about 15 dB before to –10 dB after grinding. On the basis of these excellent results it can be predicted that the recurrence of corrugation will be significantly delayed and that the noise caused by corrugation will be avoided. In view of the existing trend to further reduce the limits for acceptable noise levels, and due to the fact that flying sparks are avoided, the method...
As a standard reference book for railway track engineers and practitioners, Track Compendium describes clearly and compactly the physical properties of individual track components and their interrelationships.

Compared to the first English edition, this second edition contains several additional sections on the following topics:

- Equivalent conicity
- Interaction of the vehicle with track geometry faults
- Durability of wooden sleepers
- Ballast bed cleaning and ballast properties

There are also further additions in other chapters.

The author’s wealth of knowledge and experience over more than 20 years of research in the field of track behaviour and the optimum methods of track maintenance should serve the railway engineers now and in the future as a practical aid and a useful reference book in their daily work.